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Abstract

This paper presents a new filter bank design technique which leads to the shift-
invariant representation of signals. The proposed wavelet transform due to the
specific power spectrum of its filters has oriented filters in higher dimensions. Un-
like previous approaches, its filters do not have serious distributed bumps in the
wrong side of the power spectrum and, simultaneously, they do not introduce any
redundancy to the original signal. The proposed filter bank has linear phase filters
and high vanishing moment property. The simulation results show promising prop-
erties of the proposed filter bank that can be exploited in different signal processing
applications.
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1. Introduction

It is well known that the traditional, separable discrete wavelet transform (DWT) is
optimum for point singularities and therefore optimum for 1-D signals. But this transform
is not optimum in higher dimensions. For example in the case of 2-D transform, the filters
are not oriented and they mix +45◦ and −45◦ angles. Another deficiency of DWT is
that its coefficients are variant with a little shift in the input signal.
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(a) Analysis filter bank (b) Synthesis filter bank

Figure 1: The 3-Band analysis and synthesis filter banks for the orthogonal wavelet.

There are some papers in the literature addressing these deficiencies of the common
wavelet transform [1]. It was shown that if the wavelet function is complex and its real
and imaginary parts are Hilbert pairs, then the wavelet transform is shift-invariant and it
is directional in higher dimensions. This concept was exploited to design steerable filter
banks in [2]. Dual-tree complex wavelet is a new transform, which uses this concept to
design oriented and shift-invariant filter banks [3]. In the Dual-tree complex wavelet,
the amount of redundancy introduced into the original signal is 2d − 1, where d is the
dimension of the signal.

There are some papers in the literature regarding the design of Hilbert transform pairs,
without introducing any redundancy into the wavelet coefficients [4] [5]. The problem
with these methods is that, they introduce serious bumps, which are distributed on the
wrong side of the power spectrum. In contrast, due to the specific power spectrum of the
filters in the proposed filter bank, the bumps are concentrated at high frequencies, which
can easily be rejected by a lowpass filter.

1.1. 3-Band Filter Bank

In the 3-Band orthogonal wavelet transform, we have one scaling function ϕ and two
wavelet functions ψ1 and ψ2, which are related through the following equations:

ϕ(t) = √
3

∑
k

h0(k)ϕ(3t + k),

ψ1(t) = √
3

∑
k

h1(k)ϕ(3t + k),

ψ2(t) = √
3

∑
k

h2(k)ϕ(3t + k),

where hi(n), i ∈ {1, 2, 3}, are three different filters that constitute the 3-band synthesis
and analysis filter-banks as shown in Figure 1. In the case of the orthogonal wavelet,
the synthesis filters are given by h̃i(k) = h∗

i (N − k − 1), i ∈ {1, 2, 3}, where h∗ is the
complex conjugate of h and N is the length of the filter.

In order to have a complete orthogonal transform, the scaling and the wavelet func-
tions must satisfy the shift orthogonal condition. We can express this condition as the
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following equation:

∑
k

hi(k)hj (3n + k) = δ(n)δ(i − j), i, j ∈ {1, 2, 3}. (1.1)

An interesting property applicable to wavelet functions, which is very useful in signal
processing applications, is the moment cancellation property. If the wavelet functions
cancel k moments, ∫

t lψi(t)dt = 0, i ∈ {1, 2}, 0 ≤ l < k,

then equivalently they have k zeros at z = 1 of the Z plane. Then we have

Hi(z) =
(

1 − z−1

2

)k

Gi(z), i ∈ {1, 2}. (1.2)

The moment cancellation property implies the following form on h0:

H0(z) =
(

1 + z−1 + z−2

3

)k

G0(z). (1.3)

1.2. Linear Phase Filters

One of the most important properties of the filters which can be applied to 3-band filter
banks is linearity of the phase. The phase of the signals which are filtered using the
linear phase filters is not perturbed, which means all frequency components of the signal
are shifted equally. The filter h(t), which has the linear phase property, satisfies the
following equation:

h(n) = exp(iθ)h∗(N − 1 − n), 0 ≤ n < N − 1,

where N is the length of the filter and θ is an arbitrary variable between zero and 2π .
The following two special kinds of the linear phase filters are used in this paper:

1. Real filter with θ = 0 and N to be odd,

2. Complex filter with θ = π

2
.

In the first case, N is implied to be odd, otherwise the filter has one or more zeros at
z = −1, which is undesirable for our filter bank design procedure. In the second case, if
we consider the filters hr(n) and hi(n) as the real and imaginary parts of the filter h(n),
respectively, then hr(n) = −hi(N − 1 − n), 0 ≤ n < N − 1.
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2. Proposed 3-band Filter Bank

2.1. Filter Bank Characteristics

The ideal normalized power spectrum of the filters in the filter bank that satisfies all
desirable characteristics, such as having the Hilbert-pairs wavelet filters and introducing
no bumps on the wrong side of the power spectrum, is shown in Figure 2. This filter bank
introduces no redundancy because one of the wavelet filters is the complex conjugate of
the other, so the resulting coefficients of one filter is the complex conjugate of the other
filter, and we can discard them in further analysis.

In a specific level and type of the filter bank, if we move down-sample and up-sample
operations to the output of the analysis filter bank and to the input of the synthesis filter
bank, respectively, then the cascaded filter transform function is retained. Figure 3 shows
the simplified schematic of this operation in a specific level and type. For example, if
we consider level 2 and filter type H1(z), then M = 32, A(z) = H0(z)H1

(
z3) and

B(z) = H̃0(z)H̃1
(
z3).

The normalized power spectrum of different filter types from level 1 to level 3 for a
designed filter bank are shown in Figure 4(a)-4(c). As we can see from this figure, due
to the special frequency response of the filter h0 that has a peak at ω = π , the resulting
filters at different levels are one-sided and they do not produce serious bumps on the
wrong side of the frequency axis. As we can see, the bumps are in the same frequency
direction and are concentrated at high frequency components around ω = π .

These bumps can be easily rejected by placing symmetric lowpass filters before the
analysis and after synthesis filter banks to annihilate high frequency components. The
resulting power spectrum of the filters, after placing this lowpass filter, are shown in
Figure 4(d)-4(f). The passband of the lowpass filter is around 0.5π so by placing this
lowpass filter, we deviate the perfect reconstruction property of the filter bank. If the
lowpass filter is considered as a part of continuous-to-discrete and discrete-to-continuous
converters, then the sampling frequency must be computed such that, considering the
input signal has finite bandwidth, the sampled signal contains ALL the information of
the signal without any distortion.

In the ideal case, without considering this lowpass filter, the sampling frequency can
be computed using Nyquist’s theorem, i.e. the sampling rate must exceed twice the
highest frequency of the signal, which is called the Nyquist frequency. In the non-ideal
case, an anti-aliasing filter must be applied before the sampling part. In this case, the
sampling frequency can be calculated using the following equation:

fs ≥ fn + 2Btr,

where fn is the Nyquist frequency and Btr is the transient band of the anti-aliasing filter.
When using a discrete time lowpass filter after a continuous-to-discrete converter,

we can compute another constraint for avoiding distortion. The sampling rate must be
computed in such a way that the normalized bandwidth of the analog signal be equal to
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the passband of the lowpass filter. Therefore, the following constraint is computed:

fs ≥ fn

2Blow

,

where Blow is the normalized passband of the lowpass filter (which is around 0.5). In this
case, the amount of sampling frequency increase with respect to the common sampling
is

R =
fn

2Blow

fn + 2Btr

.

For comparison, let the transient band of the anti-aliasing filter be half of the signal
bandwidth and the normalized passband of the lowpass filter be 0.5, then R = 1.33.
We can see that the amount of sampling rate increase is not very much. In addition,
natural signals decay very fast with frequency increase; therefore if we deviate a little
from this sampling rate constraint, the amount of distortion introduces into signal is not
very much. We will see this in the second part of the simulation results.

In the extension to higher dimensions, the tensor product is applied to the wavelet
and scaling functions. In 2-D, say, this product produces one real scaling function and
eight traditional, separable wavelet functions. Since the wavelet filters are one-sided, the
resulting wavelet functions in higher dimensions are also one-sided and therefore they
are directional. Half of the wavelet functions are complex conjugate of the other half
and therefore in higher dimensions, again, the filter bank introduces no redundancy.

As explained in [6], we choose to retain the coefficients of only one level and set all
the others to zero. If the reconstructed signal from these coefficients is free of aliasing
then we define the transform to be shift invariant at that level. In order to have the
shift-invariance property in our filter bank, it is sufficient that the cascaded analysis and

synthesis filters at level j have frequency band less than
2π

3j
and as we can see in Figure

4(d)-4(f), the proposed filter bank approximately satisfies this requirement.
Now, suppose we retain the coefficients of single level and single type. In this case,

we use the equation introduced in [6] to quantify the shift dependence of a transform,
which is defined as the ratio of the energy of an unwanted aliasing transfer function to
the energy of the wanted transfer function, and is given by:

Ra =
∑M−1

k=1 E
{
A

(
Wkz

)
B (z)

}
E {A (z) B (z)} , (2.1)

where E {U(z)} calculates the energy,
∑

r

|ur |2, of the impulse response of a z-transfer

function, U(z) =
∑

r

urz
−r and W = ei2π/M .
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Figure 2: Proposed ideal normalized power spectrum of the filters in the 3-band filter
bank.

Figure 3: Simplified configuration if the coefficients from just one level and one type
are retained.
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Figure 4: Level 1 to 3 of the filters power spectrum in the proposed filter bank (a-c)
without (d-f) by applying the lowpass filter that removes frequencies higher than 0.8π .
The filters are linear phase, have length 21 and cancel 3 moments.
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2.2. Filter Bank Design Procedure

There exist different methods in the literature for designing orthogonal M-band filter
banks [7]. In lots of these methods, there are some difficulties in imposing the regularity
condition or the vanishing moment property in the design procedure. Kok [8] proposed
a time domain design technique for designing linear phase orthogonal filter banks with
high regularity and good stopband characteristics. In this part we explain about the
modification of this algorithm in order to use it for designing of our filter bank.

We want to design an orthogonal filter bank which consists of one real filter h0(n)

and two complex conjugate filters hc(n) and h∗
c(n). If we consider

hc(n) =
√

1

2
× (h1(n) + ih2(n)), (2.2)

then for having a complete orthogonal transform, h0(n), h1(n) and h2(n) must satisfy
the shift orthogonal condition expressed in Equation 1.1. Define the impulse response
vectors hi of the filters in the filter bank by the following equation:

hi =



hi(0)
...

hi(N − 1)


 , i ∈ {1, 2, 3},

where N is the length of the filters.
Define Ql ∈ RN×N as

[Ql]i,j =
{

1, i − j = 3l,

0, otherwise.

Thus the shift orthogonal condition expressed in Equation 1.1 can be rewritten as

hT
i Qlhj = δ(i − j)δ(l).

The moment cancellation property expressed in Equation 1.2, can be easily expressed in
terms of the impulse response vectors. If we want to have up to K vanishing moments
and the filters have length N , then the filter g0 in Equation 1.2 has length Ng0 = N −2K .
Define a matrix sequence Uk ∈ RNg0+2k×Ng0+2(k−1) as

[Uk]i,j =
{ 1

3
, 0 ≤ i − j < 3,

0, otherwise.

Thus, h0 = UKUK−1 . . . U1g0, where g0 ∈ RNg0×1 is the impulse response vector of
the filter G0(z). Since g0(n) is a linear phase filter, it must satisfy the even-symmetric
property described in part B of the introduction. This even-symmetric property can
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be expressed easily as a matrix equation g0 = Sg∗
0, where g∗

0 ∈ RNg∗
0
×1 and Ng∗

0
=

(Ng0 − 1)/2. The matrix S ∈ RNg0×Ng∗
0

is defined as

[S]i,j =




1, j = i and i ≤ Ng∗
0

or
j = Ng0 − i + 1 and i > Ng∗

0
+ 1 or

i = Ng∗
0
+ 1,

0, otherwise.

The moment cancellation property can be applied to the filter hc(n). If the filter hc(n)

cancels K moments, it has K zeros at z = 1 and therefore its real and imaginary parts have
K zeros at z = 1, consequently Equation 1.3 holds true for h1(n) and h2(n) in Equation
2.2. If the filters have length N , for imposing K moment cancellation property, the
filters gi(n), n ∈ {1, 2} in the equation will have length Ng1 = N − K . Define a matrix
sequence Vk ∈ RNg1+k×Ng1+(k−1) as

[Vk]i,j =




1

2
, j = i,

−1

2
, j = i − 1,

0, otherwise.

Thus hi = VKVK−1 · · · V1gi , i ∈ {1, 2}, where gi ∈ RNg1×1 is the impulse response
vector of the filterGi(z). Since the filterhc(n) is linear phase, soh1(n) = −h2(N−1−n).
And therefore g1(n) and g2(n) are related through the following relation:

g2(n) =
{

g1(Ng1 − n − 1), K is odd,

−g1(Ng1 − n − 1), K is even.

The complex filter stopband power in a given frequency,
∣∣Hc(e

jω)
∣∣2

, can be expressed
in terms of the impulse response vector as∣∣Hc(e

jω)
∣∣2 = hT

c E(ω)ET (ω)hc

where ET (ω) = [
eiω e2iω . . . eNiω

]
. Consider M(ω) = E(ω)ET (ω) = Mre(ω) +

iMim(ω), where Mre(ω) and Mim(ω) are symmetric and antisymmetric matrices, re-
spectively. If hc is expressed in terms of h1 and h2 as in Equation 2.2, then the complex
filter stopband power in that frequency, can be expressed as∣∣Hc(e

jω)
∣∣2 = hT

1 Mre(ω)h1 + hT
2 Mre(ω)h2 + 2hT

2 Mim(ω)h1.

The same procedure can be used for the computation of the stopband power of the filter
h0 in a given frequency, that leads to the following equation:∣∣H0(e

jω)
∣∣2 = hT

0 M0(ω)h0. (2.3)
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The design cost function is given by

� =
2∑

m=0

∑
l

2∑
i=0

{
hT

i Qlhm − δ(l)δ(m − i)
}2+ (2.4)

α
{
hT

0 M0(ω1)h0 + hT
1 Mre(ω2)h1 + hT

2 Mre(ω2)h2 + 2hT
2 Mim(ω2)h1

}
,

where α is the weighting coefficient and the stopband power is calculated at those fre-
quencies ω1 and ω2 that maximize it. For this purpose, the stopband is sampled uniformly
and the stopband power is evaluated at these sampled frequencies. We use a gradient
descend algorithm for minimizing the cost function. At every iteration, the weighting
coefficient α should decrease such that the optimized filters satisfy the shift orthogonal
condition. This iteration will terminate when the cost of the shift orthogonal condition
expressed in the first line of Equation 2.4 becomes sufficiently small (≈ 10−6).

3. Simulation Results

3.1. Filter Design

We use the aforementioned procedure for designing two different filter banks: one with
filters of length 15 and 2 vanishing moments and one with filters of length 21 and 3
vanishing moments. The normalized power spectrum of the filters in dB and their
impulse responses are shown in Figure 5, and the filter coefficients are given in Table
1. As we can see, the designed linear phase orthogonal filter banks with high vanishing
moment have good spectral separation and high stopband attenuation. But as mentioned
before, the scaling filter has a peak at ω = π that can be solved easily by placing a
lowpass filter before and after the filter bank. The frequency response of the designed
filter bank with filters of length 21, before and after the application of the lowpass filter,
were shown up to the third level in Figure 4. It is clear that in all levels, the filter bank
produces nearly Hilbert transform pairs wavelet filters. In all the other simulation results,
we assume that the lowpass filter is applied to the filter bank.

3.2. Examining the Amount of Distortion

As explained before, we apply the lowpass filter before the analysis and after the synthesis
filter banks, therefore we deviate from the perfect reconstruction condition. To examine
the amount of distortion introduced into the signal, we apply three levels of the filter
bank with the lowpass filter to some images of the USC database [9], and the resulting
PSNRs (peak signal to noise ratio) of the reconstructed signals are given in Table 2. As
we can see, the PSNR are very high. Therefore, we can consider our filter bank as a
nearly perfect reconstruction filter bank on natural signals.

3.3. Examining Directionality

The complex filters in higher dimensions can provide good directional selectivity. For
example, the impulse response of the 2-D filters at level 2 are shown in Figure 6. As we
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Table 1: Designed filter coefficient.
Filter length = 15 Filter length = 21

Real filter h0 Complex filter hc Real filter h0 Complex filter hc

-0.0124 -0.0002 + 0.0041i
0.0062 -0.0095 + 0.0090i
-0.0184 -0.0014 + 0.0032i

-0.0195 -0.0046 - 0.0018i 0.0306 -0.0280 + 0.0134i
-0.0028 0.0160 - 0.0205i 0.0611 0.0024 - 0.0351i
-0.0373 -0.0050 - 0.0079i 0.0171 -0.0304 + 0.0042i
-0.0271 0.0530 - 0.0753i 0.0883 0.0372 - 0.1169i
0.2735 0.0504 + 0.0402i -0.2966 0.0352 + 0.0177i
0.0127 0.1180 - 0.1403i -0.0589 0.0938 - 0.1716i
0.6495 0.3612 + 0.3391i -0.6231 0.3841 + 0.3107i
0.0369 -0.4554 + 0.4554i -0.1181 -0.4446 + 0.4446i
0.6495 -0.3391 - 0.3612i -0.6231 -0.3107 - 0.3841i
0.0127 0.1403 - 0.1180i -0.0589 0.1716 - 0.0938i
0.2735 -0.0402 - 0.0504i -0.2966 -0.0177 - 0.0352i
-0.0271 0.0753 - 0.0530i 0.0883 0.1169 - 0.0372i
-0.0373 0.0079 + 0.0050i 0.0171 -0.0042 + 0.0304i
-0.0028 0.0205 - 0.0160i 0.0611 0.0351 - 0.0024i
-0.0195 0.0018 + 0.0046i 0.0306 -0.0134 + 0.0280i

-0.0184 -0.0032 + 0.0014i
0.0062 -0.0090 + 0.0095i
-0.0124 -0.0041 + 0.0002i

Table 2: PSNR of reconstructed signal.
Image PSNR

Boat 57.58
Lenna 58.30

Baboon 60.18
Beach 55.80
Tree 55.77

Pepper 57.75
Cameraman 57.75
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Figure 5: Frequency and impulse responses of the filters in the filter bank (a) filter length
=15 and (b) filter length = 21.

can see in this figure, these filters are highly oriented in 0◦, ±45◦ and 90◦ and the real and
complex parts of the complex filter constitute Gabor-like filters. In another experiment,
we apply the proposed filter bank on a disk image and the resulting absolute value of the
wavelet coefficients at two different levels and different types are shown in Figure 7. As
we can see, the filters even at the first level are oriented.

3.4. Examining Shift-Invariance

It is interesting to test the shift-invariance performance based on Equation 2.2. For the
designed filter bank with the filters of length 15 and length 21, Ra is calculated and is
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Real Part of Wavelet Filters in 2−D

Imaginary Part of Wavelet Filters in 2−D

Figure 6: Impulse response of 2-D filter bank at level 2. Filter bank produces 4 oriented
filters.

(a)

(b)

Figure 7: Absolute value of filtered disk image coefficients of different types (a) in first
level (b) in second level.
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Table 3: Calculated Shift Dependence criterion for Different Filters.
Filters: Proposed filter bank Dual-Tree Traditional, separable

Length 15 Length 21 Complex Wavelet DWT
Wavelet filter

Level 1 -57.18 -58.93 −∞ -9.40
Level 2 -34.76 -42.26 -31.40 -3.54
Level 3 -24.53 -32.49 -27.93 -3.53
Level 4 -23.42 -31.94 -31.13 -3.52

Scaling filter
Level 1 -48.26 -60.64 −∞ -9.40
Level 2 -33.23 -41.48 -32.50 -9.38
Level 3 -32.43 -40.73 -35.88 -9.37
Level 4 -31.57 -40.63 -37.14 -9.37

Figure 8: From left to right: reconstructed images of wavelet filters from level 1 to 3
and reconstructed image of scaling filter of level 3(for saving space, only half of images
are shown.)

.

shown in Table 3. For the sake of comparison, we present the best result among different
designs of Dual-tree complex wavelet filters in [6] and also the result of traditional,
separable DWT (scaling and wavelet filters of lengths are 19 and 13). Here Ra is
represented in dB, using 10 log Ra . It is clear that the proposed filter bank has an
excellent shift-invariance property which is comparable to the Dual-tree complex wavelet
transform proposed by Kingsbury [6]. As an illustrative example, we construct the image
of only one level and the reconstructed images are shown in Figure 8. One can see that
transformed images are shift-invariant and free of aliasing.
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4. Conclusion

In this paper, we proposed a new filter bank with Hilbert-pairs wavelet filters. We also
proposed a time domain technique for designing the linear phase orthogonal filter banks
that leads to filters with good stopband characteristics and a high vanishing moment
property. As it was seen in the simulations, the proposed filter bank is shift-invariant
and oriented in higher dimensions. In addition, the filter bank does not introduce any
redundancy and is separable in higher dimensions.
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